Цитоплазматическая мембрана, ее функции и строение

Цитоплазматическая мембрана: функции, строение. Наружная цитоплазматическая мембрана :

Наружная цитоплазматическая мембрана представляет собой тончайшую пленку. Ее толщина – порядка 7-10 нм. Просматривается пленка только в электронный микроскоп.Далее рассмотрим, что собой представляет цитоплазматическая мембрана. Функции пленки также будут описаны в статье.

Структура

Какой состав имеет цитоплазматическая мембрана? Строение пленки достаточно разнообразно. В соответствии с химической организацией, она представляет собой комплекс белков и липидов. Цитоплазматическая мембрана клетки включает в себя бислой. Он выступает в качестве основы. Кроме этого, цитоплазматическая мембрана содержит холестерол и гликолипиды.

Этим веществам свойственна амфипатричность. Другими словами, в них присутствуют гидрофобные (“боящиеся влаги”) и гидрофильные (“любящие воду”) концы. Последние (фосфатная группа) направлены наружу от мембраны, вторые (остатки от жирных кислот) ориентированы друг к другу. За счет этого и формируется липидный биполярный слой. Липидные молекулы обладают подвижностью.

Они способны перемещаться в собственном монослое либо (что редко) из одного в другой.Липидный слой может иметь состояние твердого или жидкого кристалла. Монослои отличаются асимметричностью. Это значит, что в них различен состав липидов. За счет этого свойства цитоплазматические мембраны обладают специфичностью даже в рамках одной клетки.

Ко второму обязательному компоненту пленки относят белки. Многие из этих соединений могут перемещаться в мембранной плоскости либо совершать вращения вокруг собственной оси. При этом они не способны переходить из одной части бислоя в другую. Защита внутренней среды – основная задача, которую выполняет цитоплазматическая мембрана.

Строение пленки, кроме этого, обеспечивает течение различных процессов. За выполнение тех или иных задач отвечают белки. Благодаря липидам обеспечиваются структурные особенности пленки.

Цитоплазматическая мембрана: функции

Основными задачами являются:

  • Барьерная. Защитная пленка обеспечивает активный, пассивный, избирательный, регулируемый обмен соединений с внешней средой. За счет избирательной проницаемости осуществляется отделение клетки и ее компартментов и снабжение их нужными веществами.
  • Транспортная. Сквозь пленку осуществляется переход соединений от клетки к клетке. Благодаря этому доставляются питательные соединения, удаляются конечные продукты обмена, происходит секреция разных веществ. Кроме этого, формируются ионные градиенты, на оптимальном уровне поддерживаются ионная концентрация и рН. Они необходимы для активной деятельности ферментов клетки.

Вспомогательные задачи

  • Матричная. Эта функция обеспечивает определенную ориентацию и взаиморасположение белков мембраны, а также оптимальное их взаимодействие.
  • Механическая. За счет нее обеспечивается автономность клетки, внутренних структур. Также осуществляется соединение элемента с прочими аналогичными.
  • Энергетическая. На фоне фотосинтеза в хлоропластах и при осуществлении клеточного дыхания в мембранах активны системы энергетического переноса. В них также участвуют и белковые соединения.
  • Рецепторная. Ряд белков, которые присутствуют в мембране, обеспечивает восприятие различных сигналов. К примеру, циркулирующие в крови стероиды оказывают воздействие только на те клетки-мишени, которые обладают соответствующими гормонам рецепторами. Химические соединения, обеспечивающие проведение импульсов (нейромедиаторы), также связываются с помощью особых белков клеток-мишеней.

Особые свойства

К специфическим функциям мембраны относят:

  • Ферментативную. Зачастую белки, которые содержит цитоплазматическая мембрана, выступают в качестве ферментов.
  • Генерацию и проведение биопотенциалов.
  • Маркировку. Цитоплазматическая мембрана включает в свой состав особые антигены. Они действуют как маркеры-“ярлыки”. Благодаря им осуществляется распознание клеток. Маркеры представляют собой гликопротеины – белки, содержащие разветвленные олигосахаридные боковые цепи. Они выступают в качестве “антенн”.Благодаря огромному количеству вариантов боковых цепей для того или другого типа клеток может быть сформирован особый маркер. При их помощи распознанные друг другом элементы начинают действовать согласованно. К примеру, так происходит при образовании тканей и органов. Маркировка также позволяет иммунитету определить чужеродные антигены.

Дополнительные сведения

Если какие-то частицы по тем или другим причинам не способны пройти сквозь фосфолипидный бислой (к примеру, вследствие гидрофильных свойств, поскольку внутри цитоплазматическая мембрана гидрофобна и такие соединения не пропускает, либо из-за больших размеров самих частиц), но они необходимы, то пройти они могут с помощью специальных белков-переносчиков (транспортеров) и белков-каналов. Либо проникновение их осуществляется посредством эндоцитоза.В процессе пассивного транспорта пересечение веществами липидного слоя происходит путем диффузии. При этом энергия не затрачивается. В качестве одного из вариантов такого механизма может выступать облегченная диффузия. В ходе нее облегчает прохождение вещества какая-нибудь специфическая молекула. У нее может присутствовать канал, способный пропускать только однотипные частицы. При активном транспорте затрачивается энергия. Это связано с тем, что данный процесс осуществляется против концентрационного градиента. Цитоплазматическая мембрана содержит особые белки-насосы, АТФазу в том числе, которая способствует активному вхождению калиевых и выведению натриевых ионов.

Модели

Их существует несколько:

  • “Бутербродная модель”. Идею о трехслойном строении всех мембран высказали ученые Даусон и Даниэли в 1935 году. По их мнению, структура пленки была следующей: белки-липиды-белки. Такое представление существовало достаточно долго.
  • “Жидкостно-мозаичная структура”. Эта модель была описана Николсоном и Сингером в 1972 году. В соответствии с ней белковые молекулы не формируют сплошной слой, а погружаются в биполярный липидный в виде мозаики на различную глубину. Эта модель считается наиболее универсальной.
  • “Белково-кристаллическая структура”. В соответствии с этой моделью мембраны формируются за счет переплетения белковых и липидных молекул, которые объединены на базе гидрофильно-гидрофобных связей.

Источник: https://www.syl.ru/article/170708/new_tsitoplazmaticheskaya-membrana-funktsii-stroenie-narujnaya-tsitoplazmaticheskaya-membrana

Цитоплазматическая мембрана, её строение, функции и свойства – Статейный холдинг

Структура и свойства цитоплазматической мембраны

Организм человека и животных, состоящий из миллиардов клеток, развивался таким образом, что функция каждой его системы стала результатом функции суммы клеток, из которых состоят органы и ткани данной системы. Каждая клетка организма располагает набором структур и механизмов, позволяющих ей осуществлять собственный метаболизм и выполнять присущую ей функцию.

В состав клетки входят цитоплазматическая или поверхностная мембрана; цитоплазма, имеющая ряд органелл, включений, элементов цитоскелета; ядро, содержащее ядерный геном.

Органеллы клетки и ядро отграничены в цитоплазме внутренними мембранами.

Каждая структура клетки выполняет в ней свою функцию, а все они вместе взятые обеспечивают жизнеспособность клетки и выполнение ею специфических функций.

Ключевая роль в осуществлении клеточных функций и их регуляции принадлежит цитоплазматической мембране клетки.

Общие принципы строения цитоплазматической мембраны

Для всех клеточных мембран характерен один принцип строения (рис. 1), в основе которого лежат физико-химические свойства сложных липидов и белков, входящих в их состав.

Мембраны клетки располагаются в водной среде и для понимания физико-химических явлений, влияющих на их структурную организацию, полезным является описание взаимодействия липидных и белковых молекул с молекулами воды и друг с другом.

Ряд свойств клеточных мембран также вытекает из рассмотрения этого взаимодействия.

Известно, что плазматическая мембрана клетки представлена двойным слоем сложных липидов, покрывающим поверхность клетки на всем ее протяжении.

Для создания липидного бислоя в ее структуру могли быть отобраны природой и включены только те молекулы липидов, которые обладают амфифильными (амфипатическими) свойствами. Этим условиям отвечают молекулы фосфолипидов и холестерола.

Их свойства таковы, что одна часть молекулы (глицерольная для фосфолипидов и циклопентановая для холестерола) обладает полярными (гидрофильными) свойствами, а другая (жирнокислотные радикалы) — неполярными (гидрофобными) свойствами.

Рис. 1. Строение цитоплазматической мембраны клетки.

Если определенное количество молекул фосфолипидов и холестерола поместить в водную среду, то они спонтанно начнут собираться в упорядоченные структуры и формировать замкнутые пузырьки (липосомы), в которых оказывается заключенной часть водной среды, а поверхность становится покрытой непрерывным двойным слоем (бислоем) фосфолипидных молекул и холестерола. При рассмотрении характера пространственного расположения молекул фосфолипидов и холестерола в этом бислое видно, что молекулы данных веществ располагаются своими гидрофильными частями в сторону наружного и внутреннего водных пространств, а гидрофобными — в противоположных направлениях — внутрь бислоя.

Что заставляет молекулы этих липидов самопроизвольно формировать в водной среде бислойные структуры, подобные структуре бислоя клеточной мембраны? Пространственное расположение амфифильных молекул липидов в водной среде диктуется одним из требований термодинамики. Наиболее вероятной пространственной структурой, которую сформируют в водной среде молекулы липидов, будет структура, обладающая минимумом свободной энергии.

Такой минимум свободной энергии в пространственной структуре липидов в воде будет достигнут в случае, когда и гидрофильные, и гидрофобные свойства молекул будут реализованы в виде соответствующих межмолекулярных связей.

При рассмотрении поведения сложных амфифильных молекул липидов в воде можно объяснить и некоторые свойства клеточных мембран.

Известно, что если механически повредить плазматическую мембрану (например, проколоть ее электродом или через прокол удалить ядро и поместить в клетку другое ядро), то через мгновение за счет сил межмолекулярного взаимодействия липидов и воды мембрана самопроизвольно восстановит целостность. Под действием таких же сил можно наблюдать слияние бислоев двух мембран при их соприкосновении (например, везикул и пресинаптической мембраны в синапсах). Способность мембран сливаться при их непосредственном контакте является частью механизмов обновления структуры мембран, транспорта компонентов мембран из одного субклеточного пространства в другое, а также частью механизмов эндо- и экзоцитоза.

Энергия межмолекулярных связей в липидном бислое очень низкая, поэтому создаются условия для быстрого перемещения в мембране молекул липидов и белков и для изменения структуры мембраны при воздействии на нее механических сил, давлений, температуры и других факторов.

Наличие в мембране двойного липидного слоя образует замкнутое пространство, изолирует цитоплазму от окружающей водной среды и создаст препятствие для свободного прохождения воды и растворимых в ней веществ через клеточную мембрану.

Толщина липидного бислоя составляет около 5 нм.

В состав клеточных мембран также входят белки. Их молекулы по объему и массе в 40-50 раз больше, чем молекулы мембранных липидов. За счет белков толщина мембраны достигает 7-10 нм. Несмотря на то что суммарные массы белков и липидов в большинстве мембран почти равны, количество молекул белков в мембране в десятки раз меньше, чем молекул липидов.

Что же произойдет, если белковая молекула окажется помещенной в фосфолипидный бислой липосом, наружные и внутренние поверхности которых полярны, а внутрилипидный неполярен? Под влиянием сил межмолекулярных взаимодействий липидов, белка и воды произойдет формирование такой пространственной структуры, в которой неполярные участки пептидной цепи будут стремиться расположиться в глубине липидного бислоя, в то время как полярные — занять положение на одной из поверхностей бислоя и могут к тому же оказаться погруженными во внешнюю или внутреннюю водную среду липосомы. Очень сходный характер расположения белковых молекул имеет место и в липидном бислое клеточных мембран (рис. 1).

Обычно белковые молекулы локализуются в мембране разрозненно одна от другой.

Возникающие в неполярной части бислоя липидов очень слабые силы гидрофобных взаимодействий между углеводородными радикалами липидных молекул и неполярными участками белковой молекулы (липид-липидные, липид-белковые взаимодействия) не препятствуют протеканию процессов тепловой диффузии этих молекул в структуре бислоя.

Когда с помощью тонких методов исследования была изучена структура клеточных мембран, то оказалось, что она очень сходна с той, которая самопроизвольно формируется фосфолипидами, холестеролом и белками в водной среде. В 1972 г. Синджером и Никольсом была предложена жидкостно-мозаичная модель строения клеточной мембраны и сформулированы ее основные принципы.

Согласно этой модели, структурную основу всех клеточных мембран составляет жидкоподобный непрерывный двойной слой амфипатических молекул фосфолипидов, холестсрола, гликолипидов, самопроизвольно формирующих его в водной среде.

Читайте также:  Все о путях передачи чумы

В липидном бислое асимметрично расположены белковые молекулы, выполняющие специфические рецепторные, ферментативные и транспортные функции. Белковые и липидные молекулы обладают подвижностью и могут совершать вращательные движения, диффундировать в плоскости бислоя.

Белковые молекулы способны изменять их пространственную структуру (конформацию), смещаться и изменять свое положение в липидном бислое мембраны, погружаясь на различную глубину или всплывая на его поверхность. Структура липидного бислоя мембраны неоднородна.

В нем имеются участки (домены), получившие название «рафты», которые обогащены сфинголипидами и холестеролом. «Рафты» отличаются фазовым состоянием от состояния остальной части мембраны, в которой они располагаются. Особенности строения мембран зависят от выполняемой ими функции и функционального состояния.

Исследование состава клеточных мембран подтвердили, что основными их компонентами являются липиды, составляющие около 50% массы плазматической мембраны.

Около 40-48% массы мембраны приходится на белки и 2-10% — на углеводы. Остатки углеводов либо входят в состав белков, образуя гликопротеины, либо липидов, образуя гликолипиды.

Фосфолипиды являются главными структурными липидами плазматических мембран и составляют 30-50% их массы.

Углеводные остатки молекул гликолипидов обычно располагаются на внешней поверхности мембраны и погружены в водную среду. Они играют важную роль в межклеточных, клеточно-матриксных взаимодействиях и распознавании антигенов клетками иммунной системы.

Молекулы холестерола, встроенные в фосфолипидный бислой, способствуют сохранению упорядоченного расположения жирнокислотных цепей фосфолипидов и их жидкокристаллического состояния.

В связи с наличием высокой конформационной подвижности ацильных радикалов жирных кислот фосфолипидов они формируют достаточно рыхлую упаковку липидного бислоя и в нем могут образовываться структурные дефекты.

Белковые молекулы способны пронизывать всю мембрану так, что их концевые участки выступают за се поперечные пределы. Такие белки называют трансмембранными, или интегральными. В составе мембран имеются также белки, только частично погруженные в мембрану или располагающиеся на ее поверхности.

Многие специфические функции мембран определяются белковыми молекулами, для которых липидная матрица является непосредственным микроокружением и от ее свойств зависит осуществление функций белковыми молекулами.

Среди важнейших функций мембранных белков можно выделить: рецепторную — связывание с такими сигнальными молекулами, как нейромедиаторы, гормоны, ингерлейкины, факторы роста, и передача сигнала на пострецепторные структуры клетки; ферментативную — катализ внутриклеточных реакций; структурную — участие в формировании структуры самой мембраны; транспортную — перенос веществ через мембраны; каналообразующую — формирование ионных и водных каналов. Белки совместно с углеводами участвуют в осуществлении адгезии-слипания, склеивания клеток при иммунных реакциях, объединении клеток в слои и ткани, обеспечивают взаимодействие клеток с внеклеточным матриксом.

Функциональная активность мембранных белков (рецепторов, ферментов, переносчиков) определяется их способностью легко изменять свою пространственную структуру (конформацию) при взаимодействии с сигнальными молекулами, действии физических факторов или изменении свойств среды микроокружения. Энергия, требующаяся для осуществления этих конформационных изменений структуры белков, зависит как от внутримолекулярных сил взаимодействия отдельных участков пептидной цепи, так и от степени текучести (микровязкости) мембранных липидов, непосредственно окружающих белок.

Углеводы в виде гликолипидов и гликопротеинов составляют лишь 2-10% от массы мембраны; количество их в разных клетках изменчиво.

Благодаря им осуществляются некоторые виды межклеточных взаимодействий, они принимают участие в узнавании клеткой чужеродных антигенов и совместно с белками создают своеобразную антигенную структуру поверхностной мембраны собственной клетки.

По таким антигенам клетки узнают друг друга, объединяются в ткань и на короткое время слипаются для передачи сигнальных молекул друг другу.

Благодаря низкой энергии взаимодействия входящих в мембрану веществ и относительной упорядоченности их расположения клеточная мембрана приобретает ряд свойств и функций, не сводимых к простой сумме свойств образующих ее веществ.

Незначительные по силе воздействия на мембрану, сравнимые с энергией межмолекулярных связей белков и липидов, могут вести к изменению конформации белковых молекул, проницаемости ионных каналов, изменению свойств мембранных рецепторов, других многочисленных функций мембраны и самой клетки.

Высокая чувствительность структурных компонентов плазматической мембраны имеет решающее значение в восприятии клеткой информационных сигналов и их преобразовании в ответные реакции клетки.

Функции цитоплазматической мембраны клетки

Цитоплазматическая мембрана выполняет многие функции, обеспечивающие жизненные потребности клетки и, в частности, ряд функций необходимых для восприятия и передачи клеткой информационных сигналов.

Среди важнейших функций плазматической мембраны можно выделить:

Приведенный перечень функций клеточных мембран свидетельствует о том, что они принимают участие в осуществлении не только клеточных функций, но и базисных процессов жизнедеятельности органов, тканей и целостного организма.

Без знания ряда явлений и процессов, обеспечиваемых мембранными структурами, невозможно понимание и осознанное выполнение некоторых диагностических процедур и лечебных мероприятий.

Например, для правильного применения многих лекарственных веществ необходимо знание того, в какой мере каждое из них проникает через клеточные мембраны из крови в тканевую жидкость и в клетки.

Источник: grandars.ru

Сохрани статью себе в соцсеть!

Источник: https://teora-holding.ru/tsitoplazmaticheskaya-membrana-eyo-stroenie-funktsii-i-svojstva/

Цитоплазматическая мембрана. функции. структура

Оболочка клетки – это комплекс структур, отделяющий клетку от окружающей среды. Она состоит из наружного слоя – клеточной стенки и расположенной под ней плазматической мембраны.

Клетки животных и растений различаются по строению их наружного слоя. У растений и грибов на поверхности клеток расположена плотная оболочка – клеточная стенка.

У большинства растений она состоит из целлюлозы, у грибов – из хитина.

Клеточная стенка представляет собой защитную оболочку, обеспечивает форму растительных клеток, через клеточную стенку проходит вода, соли, молекулы многих органических веществ.

У животной клетки клеточной стенки нет. К цитоплазме примыкает плазматическая мембрана.

Под клеточной стенкой расположена плазматическая мембрана – плазмалемма (мембрана – кожица, пленка), граничащая непосредственно с цитоплазмой. Толщина плазматической мембраны около 10 нм.

Учитель: Сегодня на уроке мы познакомимся со строением и функциями плазматической мембраны.

Из истории открытия мембраны

Термин «мембрана» был предложен около ста лет назад для обозначения границ клетки, но с развитием электронной микроскопии стало ясно, что клеточная мембрана входит в состав структурных элементов клетки.

О наличии же пограничной мембраны между клеткой и окружающей средой было известно задолго до появления электронного микроскопа. Физико-химики отрицали существование плазматической мембраны и считали, что это просто граница раздела между живым коллоидным содержимым и окружающей средой, но Пфеффер (немецкий ботаник и физиолог растений) в 1890 году подтвердил существование ЦПМ.

В начале прошлого века Овертон (британский физиолог и биолог) обнаружил, что скорость проникновения многих веществ в эритроциты прямо пропорциональна их растворимости в липидах. В связи с этим ученый предположил, что мембрана содержит большое количество липидов и вещества, растворяясь в ней, проходят через нее и оказываются по ту сторону мембраны.

В 1925 году Гортер и Грендель (американские биологи) выделили липиды из клеточной мембраны эритроцитов. Полученные липиды они распределили по поверхности воды толщиной в одну молекулу. Оказалось, что площадь поверхности, занятой слоем липидов, в два раза больше площади самого эритроцита. Поэтому эти ученые сделали вывод, что клеточная мембрана состоит не из одного, а из двух слоев липидов.

Даусон и Даниэлли (английские биологи) в 1935 году высказали предположение, что в клеточных мембранах липидный бимолекулярный слой заключен между двумя слоями белковых молекул.

С появлением электронного микроскопа открылась возможность познакомиться со строением мембраны, и тогда обнаружилось, что мембраны животных и растительных клеток выглядят как трехслойная структура.

В 1959 году биолог Дж. Д. Робертсон, объединив имевшиеся в то время данные, выдвинул гипотезу о строении «элементарной мембраны», в которой он постулировал структуру, общую для всех биологических мембран.

Постулаты Робертсона о строении «элементарной мембраны»:

1. Все мембраны имеют толщину около 7,5 нм.

2. В электронном микроскопе все они представляются трехслойными.

3. Трехслойный вид мембраны есть результат именно того расположения белков и полярных липидов, которое предусматривала модель Даусона и Даниэлли – центральный липидный бислой заключен между двумя слоями белка.

Эта гипотеза о строении «элементарной мембраны» претерпела различные изменения и в 1972 году Сингером и Николсоном была предложена жидкостно-мозаичная модель мембраны, которая в настоящее время является общепризнанной.

Согласно этой модели основой любой мембраны является двойной слой фосфолипидов. У фосфолипидов (соединений, содержащих фосфатную группу) молекулы состоят из полярной головки и двух неполярных хвостов.

В фосфолипидном бислое гидрофобные остатки жирных кислот обращены внутрь, а гидрофильные головки, включающие оста­ток фосфорной кислоты, – наружу.

Фосфолипидный бислой представлен как динамическая структура, липиды могут перемещаться, меняя свое положение.

Двойной слой липидов обеспечивает барьерную функцию мембраны, не давая содержимому клетки растекаться, и препятствует попаданию в клетку токсических веществ.

Мембранные белки

В липидный бислой мембраны погружены молекулы белков, они образуют подвижную мозаику. По расположению в мембране и способу взаимодействия с липидным бислоем белки можно разделить на:

поверхностные (или периферические) мембранные белки, связанные с гидрофильной поверхностью липидного бислоя;

интегральные (мембранные) белки, погруженные в гидрофобную область бислоя.

Интегральные белки различаются по степени погруженности их в гидрофобную область бислоя. Они могут быть полностью погружены (интегральные) или частично погружены (полуинтегральные), а также могут пронизывать мембрану насквозь (трансмембранные).

Мембранные белки по своим функциям можно разделить на две группы:

структурные белки. Они входят в состав клеточных мембран и участвуют в поддержании их структуры.

динамические белки. Они находятся на мембранах и участвуют в происходящих на ней процессах.

Выделяют три класса динамических белков.

1. Рецепторные. С помощью этих белков клетка воспринимает различные воздействия на свою поверхность. То есть они специфически связывают такие соединения, как гормоны, нейромедиаторы, токсины на наружной стороне мембраны, что служит сигналом для изменения различных процессов внутри клетки или самой мембраны.

2. Транспортные. Эти белки транспортируют через мембрану те или иные вещества, также они образовывают каналы, через которые осуществляется транспорт различных ионов в клетку и из нее.

3. Ферментативные. Это белки-ферменты, которые находятся в мембране и участвуют в различных химических процессах.

На поверхности мембраны животных клеток образуется наружный рецепторный слой углеводов – гликокаликс. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.

Основные функции клеточной мембраны

1. Структурная(клеточная мембрана отделяет клетку от окружающей среды).

2. Транспортная (через клеточную мембрану осуществляется транспорт веществ, причем клеточная мембрана является высоко­избирательным фильтром).

3. Рецепторная (находящиеся на поверхности мембраны рецепторы воспринимают внешние воздействия, передают эту информацию внутрь клетки, позволяя ей быстро реагировать на изменения окружающей среды).

Другие функции мембраны

Дата добавления: 2017-11-21; просмотров: 523;

Источник: https://poznayka.org/s103968t1.html

Мембрана бактерий: строение, функции, из чего состоит

Несмотря на то, что между прокариотами и эукариотами существует много фундаментальных различий, есть ряд признаков, по которым эти две разные биосистемы очень схожи между собой.

Общее для ядерных клеточных единиц и доядерных организмов – наличие белкового барьера между внутренней средой клетки и внешним пространством, в котором клетка существует.

Есть гипотеза, что формирование в процессе эволюции клеточной мембраны у бактерии, как у первого живого организма, – одно из важнейших изобретений природы, в результате которого стало возможным дальнейшее усложнение внутриклеточных процессов.

Читайте также:  Человеческая аскарида не только вредит, но и лечит

Основные функции

В бактериальной клетке, как в живом самостоятельном организме, протекают все процессы, связанные с обеспечением клеточных структур энергией и питательными веществами.

Кроме того, любое действие по переработке органики (питание) сопровождается формированием и накоплением отходов, которые необходимо выводить за пределы организма.

Решение этих трех важных задач возложено на цитоплазматическую мембрану у бактерий:

  1. Доставка в клеточную среду из внешней среды соединений, обеспечивающих общий метаболизм в организме бактерии (дыхание).
  2. Снабжение бактериальной клетки питательными веществами для извлечения жизнеобеспечивающей энергии.
  3. Вывод отходов во внешнюю же среду.

Не менее важными функциями мембранной конструкции являются:

  • обеспечение постоянного состава внутриклеточного пространства;
  • крепление жгутиков;
  • синтез веществ, необходимых для построения клеточной стенки.

Строение

Независимо от того, что ЦПМ (цитоплазматическая мембрана) в любой бактериальной клетке выполняет одни и те же функции, ее строение все же может иметь ряд отличий, в зависимости от группы прокариотов, которые исследуются в каждом конкретном случае.

Структурные отличия имеются между строением плазматической мембраны грамотрицательных бактерий и грамположительных.

Здесь есть необходимость уточнить, что иногда вносится путаница в определение цитоплазматической мембраны и клеточной стенки бактерии.

Именно эти структуры, в случае выявления грамотрицательных микроорганизмов, не реагируют на окраску по Граму, что позволяет провести первоначальную идентификацию бактерий.

Поэтому, говоря о грамотрицательных прокариотах, нужно понимать, что в данном случае исследуется не ЦПМ, а клеточная стенка, хотя эти клеточные структуры и находятся друг с другом в непосредственной близости.

Второе важное отличие строения ЦПМ грамотрицательных бактерий – наличие наружной мембраны.

Если взять за основу исследование мембранных конструкций у грамположительных прокариотов, то мембрана у этих бактерий состоит из:

  1. Двух слоев липидов. Липиды – органические жироподобные вещества, которые характеризуются разной степенью водонепроницаемости (гидрофобностью).
  2. В эти два липидных слоя в буквальном смысле вмонтированы белковые молекулы, которые и отвечают за сообщение между внутренним и наружным пространством бактериальной клетки.

Если у грамположительных бактерий есть только одна ЦПМ, то у грамотрицательных прокариот их две.

Внешний слой такой клетки состоит из:

  • самой ЦПМ, которая соприкасается с цитоплазмой;
  • клеточной стенки, которая состоит из муреина;
  • наружной мембраны, которая имеет такую же бисистему липидов с белковыми комплексами.

Сообщение грамотрицательных бактериальных клеток с внешним миром через такую трехступенчатую структуру не дает преимущества этим микроорганизмам на выживание в более суровых условиях. Эти микробы также плохо переносят высокие температуры, среду с повышенной кислотностью и перепадами внешнего давления.

Хотя, безусловно, и среди грамположительных, и среди грамотрицательных прокариотов есть термофильные и барофильные группы бактерий, которые приспособились к выживанию в экстремальных условиях.

Отдельным образованием ЦПМ является мезосома. Это своеобразное впячивание части самой мембраны внутрь клеточного пространства. Мезосомы играют определяющую роль при делении клетки бактерии.

Состав

Относительно простое структурное устройство ЦПМ бактерий уравновешивается сложностью тех функций, которые возложены на каждый элемент этой системы в отдельности.

Как уже говорилось, мембранная конструкция у микробов состоит из бислоя липидов. Что представляют собой эти липиды, и какую функцию они выполняют:

  1. Бислой ЦПМ содержит определенный вид липидов – фосфолипиды. Это сложные органические вещества с содержанием фосфорной кислоты. Особенность этих органических молекул состоит в том, что их основная часть (головка) является гидрофильной (водопроницаемой), а окончание (хвостик) – гидрофобное (водонепроницаемое). Эту особенность хорошо видно на пространственной формуле этих молекул.
  2. Структура ЦПМ устроена так, что гидрофильные головки образуют наружный слой, а гидрофобные хвостики – внутренний.
  3. Эта структура формирует жидкокристаллическую модель, на которую мозаичным образом крепятся молекулы белков.
  4. Белки, как основные структурные элементы, которые содержит цитоплазматическая мембрана, подразделяются на два основных вида:
    • Группа периферических белковых молекул, которые контактируют как с цитоплазмой, так и с ЦПМ. Основная роль этих комплексов – формировать протонные мостики для транспорта внутрь клетки и за ее пределы.
    • Группа интегральных белков – крупные молекулы, которые полностью погружены в тело мембраны, а иногда даже выходят за ее пределы. ЦПМ содержит огромное количество интегральных белковых комплексов, которые имеют прочные связи с бислоем липидов и не могут дрейфовать вдоль стенок цитоплазматической мембраны, как периферийные белки.

Эта простая схема может быть значительно усложнена у разных групп бактерий. Так, например, мембранный комплекс бактерий-фотосинтетиков состоит не только из указанных белковых комплексов, в нее также внедрены фотосинтезирующие аппараты. Такие мембранные конструкции даже имеют отдельное название – фотосинтетические.

Транспорт

Исходя из того, что ЦПМ состоит из белковых молекул, которые могут строить каналы передачи между цитоплазмой и внешней средой клетки, особый интерес представляет механизм транспорта, который осуществляется через мембранные комплексы.

Активный механизм транспорта ЦПМ

В зависимости от того, какие виды связей используют те белки, из которых состоит мембрана бактерии, транспорт может быть двух видов:

Пассивный транспорт – процесс, который протекает без затраты энергии клеткой. К таким процессам относится транспорт по причине разницы концентраций в растворе. Молекулы более концентрированного раствора передвигаются в менее концентрированный, до тех пор, пока будет установлено определенное равновесие.

Активный транспорт – в нем принимают участие связующие белки. Такой транспорт идет с затратой энергии. В грамотрицательных бактериях транспорт осуществляется также с помощью пермеаз, из которых, в том числе, состоит пространство между внутренней и внешней мембранами грамотрицательных клеток. Пермеазы являются связующим звеном для этих двух бактериальных структур.

Внутренние структуры

Кроме ЦПМ, внутри бактериальных клеток разных групп могут присутствовать обособленные мембранами включения. Эти ограждения, как и цитоплазматический барьер, состоят из липидов и белков. Установлено, что эти мембраны играют роль в метаболических процессах клетки, а также принимают участие в прохождении цикла Кальвина (цикла реакции фотосинтеза у прокариотов).

Источник: https://probakterii.ru/prokaryotes/organelles/membrana-bakterij.html

Плазматическая мембрана: характеристики, строение и функции

Клеточная мембрана, которую также называют плазмалемма, цитолемма или же плазматическая мембрана — является молекулярной структурой, эластичной по своей природе, которая состоит из различных белков и липидов. Она отделяет содержание любой клетки от внешней среды, тем самым регулируя ее защитные свойства, а также обеспечивает обмен между внешней средой и непосредственно внутренним содержимым клетки.

Плазматическая мембрана

Плазмалемма — это перегородка, находящаяся внутри, непосредственно за оболочкой. Она делит клетку на определенные отсеки, которые направлены на компартменты или же органеллы. В них содержатся специализированные условия среды. Клеточная стенка полностью закрывает всю клеточную мембрану. Она выглядит как двойной слой молекул.

Основные сведения

Состав плазмалеммы — это фосфолипиды или же, как их еще называют, сложные липиды. Фосфолипиды имеют несколько частей: хвост и головку. Специалисты называют гидрофобные и гидрофильные части: в зависимости от строения животной или растительной клетки.

Участки, которые именуются головкой — обращены внутрь клетки, а хвосты — наружу.

Плазмалеммы по структуре являются инвариабельными и очень похожи у различных организмов; чаще всего исключение могут составить археи, у которых перегородки состоят из различных спиртов и глицерина.

Толщина плазмалеммы приблизительно 10 нм.

В малом содержании в состав биологической мембраны входят некоторые виды белков. Например, белки которые пронизывают всю мембрану насквозь, их называют интегральными. Мембраны, которые входят в состав и внешнего, и во внутреннего слоя (слой чаще всего бывает липидным), называются полуинтегральными.

Существуют перегородки, которые находятся на внешней стороне или же снаружи части, вплотную прилегающей к мембране — их называют поверхностными.

Некоторые виды белка могут быть своеобразными контактными точками для клеточной мембраны и оболочки. Внутри клетки находится цитоскелет и наружная стенка.

Определенные виды интегрального белка могут быть использованы как каналы в ионных транспортных рецепторах (параллельно с нервными окончаниями).

Если использовать электронный микроскоп, то можно получить данные, на основе которых можно построить схему строения всех частей клетки, а также основных составляющих и оболочек. Верхний аппарат будет состоять из трех субсистем:

  • комплексное надмембранное включение;
  • плазматическая мембрана;
  • опорно-сократительный аппарат цитоплазмы, который будет иметь субмембранную часть.

К данному аппарату можно отнести цитоскелет клетки. Цитоплазма с органоидами и ядром называется — ядерный аппарат. Цитоплазматическая или, по-другому, плазматическая клеточная мембрана, находится под клеточной оболочкой.

Слово «мембрана» произошло от латинского слова membrum, которое можно перевести как «кожа» или «оболочка». Термин предложили более 200 лет назад и им чаще называли края клетки, но в период, когда началось использование различного электронного оборудования, установили, что плазматические цитолеммы составляют множество различных элементов оболочки.

Элементы чаще всего структурные, такие как:

  • митохондрии;
  • лизосомы;
  • пластиды;
  • перегородки.

Одна из первых гипотез относительно молекулярного состава плазмалеммы была выдвинута в 1940 году научным институтом Великобритании. Уже в 1960 году Уильям Робертс предложил миру гипотезу «Об элементарной мембране». Она предполагала, что все плазмалеммы клетки состоят из определенных частей, по сути, являются сформированными по общему принципу для всех царств организмов.

В начале семидесятых годов XX века было открыто множество данных,  на основании которых в 1972 году ученые из Австралии предложили новую мозаично-жидкостную модель строения клеток.

Строение плазматической мембраны

Модель 1972-го года является общепризнанной и по сей день. То есть в современной науке, различные ученые, работающие с оболочкой, опираются на теоретический труд «Строение биологической мембраны жидкостно-мозаичной модели».

Молекулы белков связаны с липидным бислоем и пронизывают всю мембрану полностью — интегральные белки (одно из общепринятых названий — это трансмембранные белки).

Оболочка в составе имеет различные углеводные компоненты, которые будут выглядеть как полисахаридная или сахаридная цепь. Цепь, в свою очередь, будет соединена липидами и белком. Соединенные молекулами белка цепи называются гликопротеинами, а молекулами липидов — гликозидами. Углеводы находятся на внешней стороне мембраны и выполняют функции рецепторов в клетках животного происхождения.

Гликопротеин — представляют собой комплекс надмембранных функций. Его еще называют гликокаликс (от греческих слов глик и каликс, что в переводе означает «сладкий» и «чашка»). Комплекс способствует адгезии клеток.

Функции плазматической мембраны

Барьерная

Помогает отделить внутренние составляющие клеточной массы от тех веществ, которые находятся извне. Предохраняет организм от попадания различных веществ, которые будут являться для него чужеродными, и помогает поддерживать внутриклеточный баланс.

Транспортная

Клетка имеет свой «пассивный транспорт» и использует его для уменьшения расхода энергии. Транспортная функция работает в следующих процессах:

  • эндоцитоз;
  • экзоцитоз;
  • натриевый и калиевый обмен.

На внешней стороне мембраны находится рецептор, на участке которого происходит смешивание гормонов и различных регуляторных молекул.

Пассивный транспорт — процесс, при котором вещество проходит через мембрану, при этом энергия не затрачивается. Иными словами, вещество  доставляется из области клетки с высокой концентрацией, в ту сторону, где концентрация будет более низкая.

Существует два вида:

  • Простая диффузия — присуща маленьким нейтральным молекулам H2O, CO2 и О2 и некоторыми гидрофобным органическим веществам с низкой молекулярной массой и соответственно без проблем проходят через фосфолипиды мембраны. Эти молекулы могут проникать через мембрану вплоть до того времени, пока градиент концентрации будет стабилен и неизменен.
  • Облегченная диффузия — характерна для различных молекул гидрофильного типа. Они также могут проходить через мембрану согласно градиенту концентрации. Однако, процесс будет осуществляться с помощью различных белков, которые будут образовывать специфические каналы ионных соединений в мембране.
Читайте также:  Как отличить вирусную инфекцию от бактериальной

Активный транспорт — это перемещение различных составляющих через стенку мембраны в противовес градиенту. Такое перенесение требует значительных затрат энергетических ресурсов в клетке. Чаще всего именно активный транспорт является основным источником потребления энергии.

Выделяют несколько разновидностей активного транспорта при участии белков-переносчиков:

  • Натриево-калиевый насос. Получение клеткой необходимых минералов и микроэлементов.
  • Эндоцитоз — процесс, при котором происходит захват клеткой твердых частиц (фагоцитоз) или же различных капель любой жидкости (пиноцитоз).
  • Экзоцитоз — процесс, при котором происходит выделение из клетки определенных частиц во внешнюю окружающую среду. Процесс является противовесом эндоцитоза.

Термин «эндоцитоз» произошел от греческих слов «энда» (изнутри) и «кетоз» (чаша, вместилище). Процесс характеризует захват внешнего состава клеткой и осуществляется при производстве мембранных пузырьков. Этот термин был предложен в 1965 году профессором цитологии из Бельгии Кристианом Бэйлсом, он изучал поглощение различных веществ клетками млекопитающих, а также фагоцитоз и пиноцитоз.

Фагоцитоз

Происходит при захвате клеткой определенных твердых частиц или же живых клеток. А пиноцитоз — это процесс, при котором капли жидкости захватываются клеткой. Фагоцитоз (от греческих слов «пожиратель» и «вместилище») — процесс при котором очень маленькие объекты живой природы захватываются и поглощаются, так же как и твердые части различных одноклеточных организмов.

Открытие процесса принадлежит физиологу из России — Вячеславу Ивановичу Мечникову, который определил непосредственно процесс, при этом он проводил различные испытания с морскими звездами и крошечными дафниями.

Мечников описал алгоритм поглощения бактерии амебой и общий принцип фагоцитоза:

  • адгезия — прилипание бактерий к мембране клетки;
  • поглощение;
  • образование пузырька с бактериальной клеткой;
  • откупоривание пузырька.

Исходя из этого, процесс фагоцитоза состоит из таких этапов:

  1. Поглощаемая частица крепится к мембране.
  2. Окружение поглощаемой частицы мембраной.
  3. Образование мембранного пузырька (фагосома).
  4. Открепление мембранного пузырька (фагосомы) во внутреннюю часть клетки.
  5. Объединение фагосомы и лизосомы (переваривание), а также внутреннее перемещение частиц.

Можно наблюдать полное или частичное переваривание.

В случае частичного переваривания чаще всего образуется остаточное тельце, которое будет находиться внутри клетки некоторое время. Те остатки, которые будут непереварены, изымаются (эвакуируются) из клетки путем экзоцитоза.

В процессе эволюции эта функция предрасположенности к фагоцитозу постепенно отделилась и перешла от различных одноклеточных к специализированным клеткам (таким как пищеварительная у кишечнополостных и губок), а после к особым клеткам у млекопитающих и человека.

К фагоцитозу предрасположены лимфоциты и лейкоциты в крови. Сам процесс фагоцитоза нуждается в больших затратах энергии и напрямую объединен с активностью внешней клеточной мембраны и лизосомы, при которых находятся пищеварительные ферменты.

Пиноцитоз

Пиноцитоз — это захват поверхностью клетки какой-либо жидкости, в которой находятся различные вещества. Открытие явления пиноцитоза принадлежит ученому Фицджеральду Льюису. Произошло это событие в 1932 году.

Пиноцитоз — это один из основных механизмов, при котором в клетку попадают высокомолекулярные соединения, например, различные гликопротеины или же растворимые белки. Пиноцитозная активность, в свою очередь, невозможна без физиологического состояния клетки и зависит от ее состава и состава окружающей среды. Самый активный пиноцитоз мы можем наблюдать у амебы.

У человека пиноцитоз наблюдается в клетках кишечника, в сосудах, почечных канальцах, а также в растущих ооцитах. Для того чтобы изобразить процесс пиноцитоза, которой будет осуществляться с помощью лейкоцитов человека, можно сделать выпячивание плазматической мембраны. При этом части будут отшнуровываться и отделяться. Процесс пиноцитоза нуждается в затрате энергии.

Этапы процесса пиноцитоза:

  1. На наружной клеточной плазмалемме появляются тонкие наросты, которые окружают капли жидкости.
  2. Этот участок внешней оболочки становится тоньше.
  3. Образование мембранного пузырька.
  4. Стенка прорывается (проваливается).
  5. Пузырек перемещается в цитоплазме и может слиться с различными пузырьками и органоидами.

Экзоцитоз

Термин произошел от греческих слов «экзо» — наружный, внешний и «цитоз» — сосуд, чаша. Процесс заключается в выделении клеточной частью определенных частиц во внешнюю среду. Процесс экзоцитоза является противоположным пиноцитозу.

В процессе экоцитоза из клетки выходят пузырьки внутриклеточной жидкости и переходят на внешнюю мембрану клетки. Содержимое внутри пузырьков может выделяться наружу, а мембрана клетки сливается с оболочкой пузырьков. Таким образом, большинство макромолекулярных соединений будет происходить именно этим способом.

Экзоцитоз выполняет ряд задач:

  • доставка молекул на внешнюю клеточную мембрану;
  • транспортировка по всей клетке веществ, которые будут нужны для роста и увеличения площади мембраны, например, определенных белков или же фосфолипидов;
  • освобождение или соединение различных частей;
  • выведение вредных и токсических продуктов, которые появляются при метаболизме, например, соляной кислоты секретируемой клетками слизистой оболочки желудка;
  • транспортировка пепсиногена, а также сигнальных молекул, гормонов или нейромедиаторов.

Специфические функции биологических мембран:

  • генерация импульса, происходящего на нервном уровне, внутри мембраны нейрона;
  • синтез полипептидов, а также липидов и углеводов шероховатой и гладкой сети эндоплазматической сетки;
  • изменение световой энергии и ее преобразование в энергию химическую.

Видео

Из нашего видео вы узнаете много интересного и полезного о строении клетки.

Источник: https://LivePosts.ru/articles/education-articles/biologiya/plazmaticheskaya-membrana-harakteristiki-stroenie-i-funktsii

Цитоплазматическая мембрана, ее функции и строение

Наружная цитоплазматическая мембрана, окружающая цитоплазму каждой клетки, определяет ее величину и обеспечивает сохранение существенных различий между клеточным содержимым и окружающей средой.

Мембрана служит высокоизбирательным фильтром, который поддерживает разницу концентраций ионов по обе стороны мембраны и позволяет питательным веществам проникать внутрь клетки, а продуктам выделения выходить наружу.

Все биологические мембраны представляют собой ансамбли липидных и белковых молекул, удерживаемых вместе с помощью нековалентных взаимодействий. Липидные и белковые молекулы образуют непрерывный двойной слой.

Липидный бислой — это основная структура мембраны, которая создает относительно непроницаемый барьер для большинства водорастворимых молекул.

Белковые молекулы как бы «растворены» в липидном бислое.

При посредстве белков выполняются разнообразные функции мембраны: одни из них обеспечивают транспорт определенных молекул внутрь клетки или из нее, другие являются ферментами и катализируют ассоциированные с мембраной реакции, а третьи осуществляют структурную связь цитоскелета с внеклеточным матриксом или служат рецепторами для получения и преобразования химических сигналов из окружающей среды.

Важное свойство биологических мембран — текучесть. Все клеточные мембраны представляют собой подвижные текучие структуры: большая часть составляющих их молекул липидов и белков способна достаточно быстро перемещаться в плоскости мембраны. Другое свойство мембран — их асимметрия: оба их слоя различаются по липидному и белковому составам, что отражает функциональные различия их поверхностей.

Функции наружной цитоплазматической мембраны:

· барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

· транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

· матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;

· механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

· энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

· рецепторная — некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

· ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

· осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

· маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн».

Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей.

Это же позволяет иммунной системе распознавать чужеродные антигены.

Источник: http://studbooks.net/788032/meditsina/naruzhnaya_tsitoplazmaticheskaya_membrana_stroenie_funktsii

3. Функции и строение цитоплазматической мембраны

Элементарная мембрана состоит из бислоя липидов в комплексе с белками (гликопротеины: белки + углеводы, липопротеины: жиры + белки). Среди липидов можно выделить фосфолипиды, холестерин, гликолипиды (углеводы + жиры), липопротеины.

Каждая молекула жира имеет полярную гидрофильную головку и неполярный гидрофобный хвост. При этом молекулы ориентированы так, что головки обращены кнаружи и внутрь клетки, а неполярные хвосты – внутрь самой мембраны.

Этим достигается избирательная проницаемость для веществ, поступающих в клетку.

Выделяют периферические белки (они расположены только по внутренней или наружной поверхности мембраны), интегральные (они прочно встроены в мембрану, погружены в нее, способны менять свое положение в зависимости от состояния клетки). Функции мембранных белков: рецепторная, структурная (поддерживают форму клетки), ферментативная, адгезивная, антигенная, транспортная.

Схема строения элементарной мембраны жидкостно-мозаич-ная: жиры составляют жидкокристаллический каркас, а белки мозаично встроены в него и могут менять свое положение.

Важнейшая функция: способствует компартментации – подразделению содержимого клетки на отдельные ячейки, отличающиеся деталями химического или ферментного состава. Этим достигается высокая упорядоченность внутреннего содержимого любой эукариотической клетки.

Компартментация способствует пространственному разделению процессов, протекающих в клетке. Отдельный компартмент (ячейка) представлен какой-либо мембранной органеллой (например, лизосомой) или ее частью (кристами, отграниченными внутренней мембраной митохондрий).

Источник: https://ozdorovecheloveka.ru/o-infektsii/tsitoplazmaticheskaya-membrana-ee-funktsii-i-stroenie

Ссылка на основную публикацию
Adblock
detector